

Bio-based fire-retardant thermoplastic composites reinforced with natural fibers

THERMOFIRE (GA101112370)

Elvira Villaro Ábalos

The project is supported by the Circular Bio-based Europe Joint Undertaking and its members.

INDEX

Introduction
General Objectives
Developed Materials

3.1. PA-11
3.2. Fibers
3.3. Flame Retardant Additives
3.4. Integration

Preliminary Results

THERMOFIRE

Bio-based fire-retardant thermoplastic composites reinforced with natural fibres

- Design, develop and validate novel, lightweight and low-cost bio-based and recyclable thermoplastic composites with enhanced mechanical properties and fire resistance by the incorporation of natural fiber reinforcements and bio-based halogen-free flame retardants.
- Consortium of 12 partners led by Avanzare Innovacion Tecnologica SL
- Use of biobased materials as a feedstock
- $-\dot{\Box}$ 100% biobased PA11, Biobased flame retardant and biobased fibers
- 3 prototypes (TRL5) in automotive (housing for electrical batteries), aerospace (aircraft interior seats) and textile (non-woven fabrics).
- Remove the EU's dependence on fossil-based polymers and increases the sustainability of the composites, addressing new methods for bio-polymer preparation with low environmental impact.

Introduction

THERMOFIRE

Bio-based fire-retardant thermoplastic composites reinforced with natural fibres

CBE JU contribution: € 4.47 million

Duration: June 2023 – May 2027

Feedstock: [natural fibers, 100% biobased PA11, biobased flame retardant] **Main products:** [aircraft interior seats, battery houses for electrical vehicle made in 100% biobased materials]

Introduction

THERMOFIRE

Bio-based fire-retardant thermoplastic composites reinforced with natural fibres

The THERMOFIRE project has the objective to develop **novel bio-based and recyclable composites** with enhanced mechanical properties and fire resistance by using **natural fiber reinforcements** and **bio-based halogen-free flame retardants.** The production of these novel composite materials will be scaled up and **3 types of demonstrators** will be developed: aerospace, automotive and textile applications.

- Up to 100% bio-based polymers will be reinforced with different natural fibers (e.g., regenerated cellulose from wood and commercial flax) and bio-based flame retardants aiming at giving excellent flame retardancy to the final bio-based thermoplastic (TP) composites. The innovation of THERMOFIRE relies on the development of high-performance composites with a 20% reduction in weight and 30% in cost while maintaining the required levels of safety suitable for applications under stringent operating conditions.
- New halogen-FREE and bio-based flame retardants with low toxicity compared to commercial ones.
- Environmentally friendly and low-cost biobased cellulose fibers as reinforcement with CO2 neutrality directly extracted from nature without further processing.
- Development of up to 100% bio-based TP composites with improved fire-resisting properties by using bio-based additives and/or by developing a new intrinsic bio-based polyamide 11 by introducing fire retardant monomer in its molecular chain.
- Verify the reusability and recyclability of the produced materials.
- Development of three prototypes adapted to the application requirements of the aerospace, automotive and textile sectors.
- Development of validation test of prototypes (TRL 5)

- 3.1. Biobased Flame Retardant Additives (AVA)
- 3.2. Biobased FST PA-11 (ARK)
- 3.3. Biobased Fibers (CANOE)
- 3.4. Integration & Use cases:

CRF SAFRAN GEOPANNEL

Co-funded by

the European Union

Bio based Industries

Europe

3.1. Flame Retardant Additives (AVANZARE)

THERMOFIRE Project – GA no. 101112370

3.1. Flame Retardant Additives (AVANZARE)

Study of the bio-based flame retardants

Phosphorus-based Bio-based Flame Retardants:

• Phytic Acid (Plant sources)

Nitrogen-based Bio-based Flame Retardants:

• Lignin and Tannin-based Flame Retardants:

3.1. Flame Retardant Additives (AVANZARE)

Study of the carbonous materials

- GO
- Nanoplatelets

Char Effect: Char is a residue left behind after a material undergoes combustion. In the context of flame retardancy, the formation of a stable and protective char layer is desirable as it can act as a barrier, limiting the access of oxygen and slowing down the combustion process.

THERMOFIRE Project – GA no. 101112

PANAAN chift (nm)

Classification	Description					
V0	No complete ignition, and the flame duration is less than 10 seconds after each series of five flame applications					
V1	No complete ignition, and the flame duration is less than 30 seconds after each series of five flame applications.					
V2	No complete ignition, and the flame duration is less than 30 seconds after each series of five flame applications. With flame propagation and the formation of drops or particles					
NC	The flame duration is higher than 30 seconds after each individual flame application.					
GO-C	Chitosan $HO \rightarrow HO \rightarrow$					

Induce Char graphitization

IRE Project – GA no. 101112370

September 24, 2024

3.1. Flame Retardant Additives (AVANZARE)

Study of the carbonous materials

- GOx
- PLAT 7
- PLAT 40

Nanoplatelets SEM

THERMOFIRE Project – GA no. 101112370

3.2. PA-11 (ARKEMA)

Study with PA-11 to FST-PA11

Produced from a renewable source (castor oil), PA11 is used in a large number of applications thanks to its outstanding properties, including excellent chemical resistance, easy processing, high and low-temperature performance (-40°C / +130°C), high dimensional stability, and low density.

Many industries around the world (e.g. automotive, textile, oil & gas, wire & cables, electronics)

PA11 is easy to process using most processing technologies (extrusion, extrusion-blow molding, injection molding, rotomolding, and 3D printing).

ARKEMA FST-PA11

Work Package WP2- Raw materials: development of bio-based TP polymers, natural fibers and bio-based flam retardants

Internal

reference

VP2238

VP2242

1			
and the			
	IF	1	
1	T	P	
-	1		

VP2245

	VP	PA11	TANIN		
-	2233				
-	2234				
	2236				
	2237				
	2238				
	2239				
1	2240				
	2241				
	2242				
	2243				
	2244				
	2245				
	2246				
	2247				
	2248				
	2249				
	2250				
	2251				
	2261				
	2262				
	2263				
	2264				
	2265				

Biobased FR

Co-funded by the European Union

THERMOFIRE Project – GA no. 101112370

14

Other (rheologhy

3.3. Fibers (Cellulose by CANOE + comercial ones; jute or

- 2 layers of suspensión with FR
- Drying temperature below 100°C for 1 hour
- Increase the charge of bio-additives

3.3. Cellulose fibers (CANOE)

THERMOFIRE Project – GA no. 101112370

Work Package WP2- Raw materials: development of bio-based TP polymers, natural fibers and bio-based flam retardants

Next steps

- Sinergy between carbonous materials to modify reology and MFIs.
- Sinergy with different biobased FRs to increase the performance.
- Preparation of composites with additives and fibbers and testing the properties.
- LCC and LCA analysis.

